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Combination rules are proposed for the depth and position parameters of the 
effective potential well for interactions between molecules. They are an exten- 
sion, by the introduction of a rigid-core parameter that can be determined 
independently from known dispersion coefficients, of the Tang-Toennies rules 
for interactions between noble-gas atoms. Such rules permit the calculation of 
many mixture properties of molecular gases via known correlation equations, 
without involving any attempt to predict the entire anisotropic intermolecular 
potential. The rules are tested with the few known potentials, and with more 
extensive experimental data on mixture properties, and appear to work satisfac- 
torily. 
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1. I N T R O D U C T I O N  

The p rob l em of  calcula t ing the proper t ies  of mixtures  from those of  its 
componen t s  is one of long-s tand ing  and  increasing urgency,  since the num-  
ber of poss ible  mixtures  of interest  is so large. In  terms of an under ly ing  
s t a t i s t i ca l -mechan ica l  theory ,  the p rob l em becomes tha t  of de te rmin ing  the 
in te rac t ion  between two unlike molecules  in terms of the in terac t ions  
between pairs  of  like molecules.  This la t ter  p rob lem has now been essen- 
t ially solved for the noble  gases by Tang  and Toennies  E 1 ]. The pu rpose  of  
this pape r  is to suggest  an extension of the T a n g - T o e n n i e s  c o m b i n a t i o n  
rules tha t  can be used to predic t  the potent ia l -wel l  pa rame te r s  for the 
effective spherical  po ten t ia l s  of  molecu la r  systems. 
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Our goal here for molecular gases is, however, more limited than that 
achieved for noble gases. We do not seek to determine the entire potential 
energy curve, including its complicated dependence on orientation, or even 
its effective spherical average; these are important but difficult problems 
whose resolution still lies in the future. Instead, we seek to determine just 
the depth of the potential energy well, e, and the separation, a, at which the 
potential energy is zero. The reason is that these parameters should be 
sufficient to determine many properties of gaseous mixtures, because of the 
existence of a successful limited principle of corresponding states for low- 
density molecular gases [2], in which the parameters e and a are used as 
scale factors of energy and molecular size for the correlation and prediction 
of both equilibrium and transport properties. Earlier work [3] on the 
viscosities of binary gas mixtures strongly indicated that a similar 
correlation can be developed for mixtures in terms of the mixed-interaction 
parameters e12 and 0-12. Accurate combination rules for e12 and a12 would 
thus enable such a correlation scheme to predict the properties of mixtures 
without the need for any measurements on the mixtures themselves. In 
short, the prediction of just the parameters ~12 and o-12 for molecular 
systems would enable many thermophysical properties of mixtures to be 
calculated without the need for any further information on the entire 
anisotropic intermolecular potential or for any measurements on mixtures. 
In what follows, we present combination rules for molecular parameters e12 
and 0-12 that are extensions of the Tang-Toennies rules for noble-gas 
atoms, by introducing a rigid-core parameter into the potential to account 
for molecular size. The introduction of this parameter does not require any 
new experimental data beyond what is already required for the noble gases. 

2. COMBINATION RULES 

Any extension of the noble-gas combination rules must in some way 
incorporate information on molecular structure, that is, on the molecular 
size and shape. Since we are concerned here only with effective spherical 
potentials, molecular shape itself does not enter the problem and we can 
consider only some sort of average molecular size to be the leading 
candidate as a parameter for the extension. A straightforward procedure is 
to introduce a rigid core into the potential to mimic average molecular size. 
This sort of core model for intermolecular potentials was suggested long 
ago by Kihara 1-4] and has been used since then by a number of workers 
in different problems. That is, the spherical potential-energy function V(r) 
of the noble-gas type is imagined to be replaced by an effective spherical 
potential displaced from the origin, 

V(r)--* ( V(~-a) ) (1) 

where ~ is the distance between molecular centers of mass, and a is the core 
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diameter. The combination rule for the new parameter a is then the same 
as for rigid spheres, 

a12=�89 +a2)  (2) 

Values of a I and a 2 for the single components can be calculated from 
information on the long-range C (6~ dispersion coefficients, as discussed in 
what follows. Since this information is already needed for the noble-gas 
combination rule for 512, the introduction of the core parameter does not 
require any new experimental data. 

We first recall briefly the assumptions and approximations that 
underlie the noble-gas combination rules, in order to see how the 
introduction of a core changes them. We also wish to make some minor 
generalizations. There are four main assumptions or approximations, two 
for o12 and two for 512. 

The assumptions leading to the rule for 0-12 are applied only in the 
immediate vicinity of the potential minimum or zero crossing point, where 
it is safe to use a simple mathematical expression for V(r). The first and 
most important assumption is the adoption of an atomic-distortion model 
[5-7]  for the repulsive component of the forces, and the second is a 
semiempirical geometric-mean combination rule for the attractive com- 
ponent of the forces. The selection of a mathematical form for V(r) then 
yields an explicit expression for 0-12 in terms of 51, 0-1 and 52, 0-2 [plus any 
dimensionless parameters included in V(r)]. The introduction of a core 
simply moves the origin from 0 to - a ,  which has the effect of replacing r 
by ( f - a ) ,  as indicated by Eq. (1), and the combination rule keeps the 
same form but with each 0- replaced by (0--  a). If a Lennard-Jones (12, 6) 
potential is used for ( V ( f - a ) ) ,  the result is 

r!~l/(~ + 1)(0-1 _ al )~/(~ + 1) -I- l e l / ( n  + + 1 ) I n  + i 
(0-12 __ a12)n 6.~ L2~1 - -go2 1)(ff2--a2) n/(n 

(51~2) l/2 ( 0 - 1 - - a l )  3 (0-2- -a2)  3 
(3) 

With n = 12 and the a's equal to zero, this is the rule proposed by Tang 
and Toennies [1].  If an (exp, 6) potential is used instead of a (12, 6), the 
result is 

0-12--a12=-~ [ (0 -1 - - a l )+ (0 -2 -a2 ) ]  1 c~ ln(0-12-a12)--7 l n E  (4) 

where 

In E 1 = ~ In (e 152) + 3 in (al - al)(0-2 - a2) 

- -  0 -1- -  a l  In( ~o---~11 a, 1) 
(0-1 - -  a l )  q- ( 0 2  - -  a 2 )  

--  (O. 1 _ a l ) q _  ( o . 2 _ a 2 )  (5) 
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Here c~ is the dimensionless parameter of the (exp, 6) potential that charac- 
terizes the steepness of the repulsion; a value of ~ = 14 represents a real 
potential reasonably well in the vicinity of the minimum. Although Eq. (4) 
is an implicit equation for a12, the factor in braces is very close to unity 
and a solution by iteration converges rapidly. Despite their different 
appearances, Eqs. (3) and (4) give numerical results that differ by very 
little, the difference being of the order of 1%. 

The combination rule of Eq. (4) shows explicitly how the old 
arithmetic-mean rule for o-12 [8] emerges as a first approximation. Both 
Eq. (3) and Eq. (4) merely furnish rather modest corrections (<  10%) to 
the arithmetic-mean rule, although this fact is not so obvious in the case of 
Eq. (3). The numerical results are not very sensitive to the values chosen 
for n and c~. 

We can see explicitly from Eq. (4) that the introduction of the rigid 
core can have only a modest effect on a12, as follows. To the first 
approximation of taking the expression in braces equal to unity, the a's 
cancel out because a12 = �89 + a2) according to Eq. (2). A different way to 
demonstrate the modest effect of the core on a~2 is to rewrite Eqs. (3)-(5) 
in terms of a reduced core parameter, 

a* =- a/a (6) 

If the different a*'s happen to be equal, then all the factors of ( 1 -  a*) in 
Eqs. (3) (5) cancel out. Thus the cores do not modify the value of a12 
unless the values of a* and a~' are quite different. 

The above arguments serve as justification for the applicability of the 
Tang-Toennies rule for a12--or its modification with an (exp, 6) in place of 
a (12, 6) potential--to molecules as well as noble-gas atoms. Numerical 
calculations that we have carried out for a wide variety of systems show 
that the introduction of the rigid cores affects the calculated values of a12 

by less than 1%. 
The effect of the core is somewhat more pronounced for e12. The fun- 

damental assumption for e12 is that the dominant attractive contribution to 
e comes from C (6~. In the case of noble-gas atoms this implies that the 
effects of C (81, C (1~ etc., are small, or can at least be included empirically 
in C (6). In the case of molecules, there is the additional implication that the 
effects of the molecular permanent multipole moments (dipoles, 
quadrupoles, etc.) on the effective spherical potential are small. This is not 
unreasonable, inasmuch as the electrostatic interactions between per- 
manent multipoles vanish on averaging over all orientations. Nevertheless, 
this is probably the most severe of the assumptions involved in finding elz. 
The two specific approximations used in calculating e12 are an accurate 
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theoretical combining law for ,-~(61 and a near-universality of the dimen- ~12 
sionless group C(6)/8(0 - - a) 6. The latter condition directly gives the rule for 
el2 once a12 and C] 6) are known. 

A very accurate combination rule for C (6) is known to be 12 

~1~2 1 [ ~x12 ~2 ] = - -  q_ " 2  

~12("(6) 2LC16) C(26~ (7) 

where cq and cq are the dipole polarizabilities. This rule is not affected by 
the introduction of a core, since it is based on an asymptotic theory valid 
for large r, where a is negligible. The accuracy of this formula has been 
tested for a large number of atoms and molecules and found to be correct 
within about 1% [9-11 ]. 

It has been noted a number of times for the noble gases that the 
numerical value of C* = C ( 6 ) / e o  -6 varies only weakly from system to system 
and is, thus, nearly universal. It follows that almost any reasonable com- 
bination rule for C*z will be satisfactory. Tang and Toennies used C'2 = 
(C*C2) ~/2. The near-universality of C* can be justified via simple models of 
V(r) if the dominant attractive contribution to e comes from the C (6) 
energy [12]. The introduction of a core leads us to expect the near- 
universality to apply not to C* but to the quantity 

C (6) C:~ 
8(0"-- a)6-- (1 - -a*)  6 (8) 

Then the combination rule for e12 is immediately found from the geometric- 
mean rule for this quantity to be 

~"12 
= \ (0-12-  a,2) 6 ) \  [c 6 c 1IV (9) 

This formula shows explicitly how the old geometric-mean rule for e12 [8] 
emerges as a first approximation. It also shows that e12 will not be affected 
by the introduction of the cores if all the a*'s are equal, just as was the 
case for al2. In other cases, however, the effect of the core is more substan- 
tial than for a12; numerical calculations on a large number of systems show 
effects on 212 of up to l0 %. 

It remains only to specify the procedure for determining the core 
diameters. If we can assign a numerical value to C]6)/e1(o-1- al)  6 for a par- 
ticular system, say by analogy with the value of C* for a similar noble-gas 
interaction, then we can calculate a* directly from Eq. (8), since C* for the 
molecular system is known. Such an assignment is simplified by the obser- 
vation that the values of C* for the interactions among the heavy noble-gas 
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atoms Ar, Kr, and Xe are, within about 5%, all equal to 2.2 [13]. 
Choosing this as a universal value for the molecules of interest, we obtain 
the value of al for each homonuclear system as 

al = O'l [1 -- (C*/2.2) I/6 ] (10) 

where C* is the known value of C~6)/~1 ~6 for the molecular system. 
We can now summarize the combination rules for molecules. We still 

require only the same information on the single components as for noble 
gases, namely, the parameters e and a, the dipole polarizabilities e, and the 
C 16) dispersion coefficients. The first step is to calculate al and a2 from 
Eq. (10); if C* happens to be greater than 2.2, then a* is taken to be zero. 
In the next steps a12 is calculated from Eq. (2), a~2 from Eq. (3) or (4), C] 6) 
from Eq. (7), and finally, e12 from Eq. (9). 

One final observation is relevant. Since the ratio rm/a is nearly con- 
stant for the models used for V(r), where r m is the position of the potential 
minimum, it follows that the ratio ( r  m - -  a)/(~r- a) is also constant for the 
core models. Hence the quantities denoted by a in the combination rules of 
Eqs. (3), (4), and (9) can be interpreted as the position either of the 
potential minimum or of the zero crossing point. 

3. COMPARISON WITH E X P E R I M E N T  

There are only few actual potential parameters e and a (or rm) known 
for molecular gases, with which to test the proposed combination rules. 
All of these are based on low-energy molecular-beam measurements of 
scattering cross sections, combined with analysis of transport and virial 
coefficient data [14-19].  Results are summarized in Table I, and the 
necessary input data are recorded in Table II. The entries for He-Ar and 
Ne-Ar serve merely as an indication of the level of agreement attained for 
the noble gases and as a standard of comparison. The agreement between 
the calculations and the direct experiments for He-O2,  Ne-CH4,  and 
Ar-CH4 is nearly as good as for the noble-gas systems. In these cases the 
core sizes are small or zero, so that the Tang-Toennies combination rules 
are in effect being used unchanged. The comparison for the systems 
involving SF 6 is indirect, since no direct measurements of the SF6-SF 6 
interaction exist. This interaction was calculated from the measured mixed 
interactions via the combination rules, and the average then used to back- 
calculate the original mixed interactions. This is a consistency check only, 
and the results are seen to be less good than for the others. 

The level of agreement for 8 is generally poorer than for rm, a 
phenomenon that has been noted many times previously. However, 
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Table I. Test of Combinat ion Rules for Directly Measured Interactions 

137 

r m (~)  ~/k (K) 
a Ref. 

System Calc. Expt. Calc. Expt. (~)  No. 

He-Ar  3.45 3.48 31.9 29.8 0 1 
Ne-Ar  3.464 3.417 67.6 69.2 0 1 

H e - O  2 3.45 3.45 35.2 29.3 0 16 
N e - C H  4 3.630 3.676 71.7 65.9 0.015 18 
Ar -CH 4 3.899 3.850 166.6 169.6 0.015 18 

He-SF 6 4.33 4.22 41 62 0.16 17 
Ne-SF  6 4.29 4.30 95 111 0.16 17 
Ar-SF6 4.48 4.44 255 237 0.16 15 
Kr-SF6 4.57 4.61 322 272 0.16 15 

SF6-SF 6 5.06 - -  600 - -  0.32 Indirect 

calculated properties are less sensitive to e than to rm, so the differences 
tend to compensate. It also frequently happens that the deviations are in 
opposite directions for e and r m and tend to compensate each other in the 
calculation of gas properties. 

Despite the scarcity of directly measured potential parameters, other 
kinds of data exist for testing the combination rules. The first kind consists 
of a large number of the correlation parameters a and z obtained from 
analysis of accurate viscosity data [20]. The second kind consists of 

Table II. Input Data  for Table I" 

r m e /k  C (6) a a Ref. No. for 
System (A) (K) (e2a~) (ao ~) (,~) rm and 

He-He  2.967 10.8 1.4608 1.3831 0 1 
Ne-Ne  3.087 42.25 6.875 2.663 0 1 
Ar -Ar  3.759 143.2 67.2 11.08 0 1 
K r - K r  4.012 199.9 133 16.74 0 1 

02  02  3.94 133 62.01 10.59 0 14 
CH4-CH 4 4.03 201 129.6 17.47 0.03 19 

SF6-SF 6 5.06+0.05 6 0 0 +  180 951 44.14 0.32 Indirect: 
15, 17 

" D a t a  on C (6) and a taken from the compilation in Appendix B of Ref. 33. 
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Table I lL Ratios of Calculated to Experimental Values of Potential-Energy 

Scaling Parameters for Unlike Interactions; a Above the Diagonal and ~ Below a 

O-12 

/212 Ar Kr Xe N2 CO 02  CO2 N 2 0  CH4 CF6 SF6 

Ar " ' ' , , , , 1 . 0 0 2  0.995 1.003 0.997 1.001 0.990 1.009 1.029 1.004 1.030 

Kr 0.98 " - - , ~ 9 9 0  0.991 0.991 1.005 1.012 - -  0.991 0.998 1.016 

Xe 1.02 1.05 ~ . . . . . . . .  

N z 1.01 1.11 - -  ~ 1 . 0 0 0  0.998 0.999 1.006 1.007 1.005 1.039 

CO 1.05 1.11 - -  1.00 ~ - -  0.999 1.000 1.000 1.006 - -  

02  1.00 0.99 - -  1.04 - -  ~ 0.996 - -  - -  1.003 1.033 

COz 1A6 1.08 - -  1.05 1.00 1.11 ~ 1.002 1.005 1.001 1.025 

N 2 0  1.00 - -  - -  0.97 0.96 - -  0.99 ~ - -  - -  - -  

CH 4 0.85 0.72 - -  0.99 1.01 - -  1.04 - -  ~ 0.990 0.993 

0.95 1.04 0.96 0.97 0.95 1.06 CF4 - -  1.07 ~ 1.019 

SF 6 0.79 0.90 - -  0.77 - -  0.76 0.93 - -  1.03 0.89 

a Data  o n  C (6) and c~ taken from the compilation in Appendix B of Ref. 33. 

measurements of mixture properties, which can be compared with values 
calculated from the combination rules via correlation equations [-2, 3 ]. 

Although the correlation parameters summarized in Ref. 20 are 
probably not true potential-well parameters, they are the very quantities 
needed to predict mixture properties, and are thus worth examining. The 
results are shown in Table III. We have omitted any interactions involving 
He and Ne because the well depths for He-He  and Ne-Ne are so shallow 
that their values of e cannot be determined satisfactorily from viscosity 
data at and above room temperature. On the whole, the agreement shown 
in Table III is good, although there are a few notable discrepancies. Most 
of the a values agree within 1%, although a few of the interactions disagree 
by up to 4%;  the average absolute deviation for all the entries is 0.9 %. 
Similarly, most of the e values agree within 5 %, although a few deviations 
are larger and range up to 28 %; the average absolute deviation for all the 
entries is still only 7 %. In almost all cases the deviations for cr and ~ are in 
opposite directions. Thus, the combination rules predict the unlike scaling 
parameters for viscosity fairly well. The few systems for which agreement 
seems poor in Table III nevertheless give good predictions for mixture 
properties, owing to compensation between ~r and ~, as illustrated below. 
The prediction of mixture properties is, of course, the primary aim of the 
present combination rules. 
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Fig. 1. Deviation plot for the viscosity of Ar-Oz mixtures as a 
function of temperature. Several points at a given temperature 
refer to different mixture compositions. Data from Ref. 21. 
A = { [r/(expt) - r/(calc)]/r/(expt) } x 100 %. 

For  compar i son  with measurements  of  mixture properties,  we select 
three systems from Table III, as follows: one which shows  excellent 
agreement for a and ~ (Ar-O2) ,  one which shows  more  typical agreement 
( N 2 - C O 2 )  , and one which shows  rather poor  agreement (N2-SF6) .  

Figures 1-3 show the deviat ions  of the calculated mixture viscosit ies 
from the measured values [ 2 1 - 2 4 ] .  Experimental  viscosit ies for the single 
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components have been used in the calculations, so that the deviations 
shown reflect more directly the effects of the unlike interactions in the 
mixtures. The agreement for Ar-O2 and N 2 - C O  2 is about as good as that 
obtained for single gases [2], namely, deviations of the order of 0.5%. 
Even for N2 S F 6  the deviations are only of the order of 1%; this is a rather 
dramatic example of the compensating effect of opposite deviations in a 
and e. 
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Fig. 4. Deviation plot for the diffusion coefficient of Ar -O 2 
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Mixture viscosities, useful in their own right, are not a very sensitive 
test of unlike interactions, because the like interactions contribute on an 
equal footing. A more sensitive mixture property, which depends almost 
exclusively on the unlike interactions, is the binary diffusion coefficient. 
However, the experimental accuracy of the measurements [25-32] for the 
same three systems is distinctly lower than in the case of viscosity. The 
results are shown in Figs. 4-6 as deviation plots. Scatter in the data can be 
seen to run as high as about + 10 %; the only really accurate measurements 
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are those by Trengove et al. [30] on Ar-O2, which have better than 1% 
accuracy. The combination rules appear to predict diffusion coefficients 
within the experimental scatter. 

Insofar as they can be tested, then, the modified combination rules 
seem to work satisfactorily. Certainly none of the experimental tests 
indicates any noticeable flaw in them. 

4. CONCLUSIONS 

The present study shows that the Tang-Toennies combination rules 
for noble-gas atoms can be extended, with only minor modifications, to 
molecular gases, at least for the restricted problem of determining the two 
scale parameters of the effective potential-energy well. These modified rules 
make possible the prediction of the properties of many mixtures for which 
experimental data are scanty or lacking. Further testing of the rules, 
without additional experimental work, involves their application to the 
prediction of the properties of a large number of mixtures; the results of 
such work will be reported elsewhere. 
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